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We consider the problem of ordering acyclic graphs corresponding to saturated hydro-
carbons and the problem of defining molecular branching. In particular, we consider the
recently introduced graph theoretical invariant λλ1, as the basis for the ordering of graphs
and the definition of molecular branching. λλ1 is defined as the leading eigenvalue of
the path matrix in which the element (i, j) represents the leading eigenvalue for the path
connecting vertex i and vertex j. Among 35 nonane isomers and 75 decane isomers no
two structures have the same λλ1. Normalized leading eigenvalue λλ1/n is suggested as
the index of molecular branching. For smaller alkanes the new index parallels previously
suggested indices of molecular branching yet it shows no degeneracy that limited the use of
earlier descriptors of molecular branching.

1. Introduction

Is there an alternative to the use of the serial register number as molecular ID, as
has been practiced by Chemical Abstract Service? Limitations of serial numbers are
apparent, the number assigned to a structure bears no relationship to the structure and
its properties. However, the number is unique. This, however, does not necessarily
prevent duplication of records, because the same structure could be registered under
different names [9].

Alternative (to the official IUPAC) chemical names, if based on mathematical
considerations [14,15,48,49], may reflect inherent structural elements and facilitate the
search for structurally similar compounds. But, if one can come up with a single
molecular ID number that is based on properties of the structure (in contrast to names
that are based on a convention, even if based on structural considerations), one could
expedite searching for similar structures. Moreover, if the ID numbers reflect various
structural components it is possible that the ordering of structures will parallel rela-
tive magnitudes of selected molecular properties and even allow one to interpolate for
unknown data. Some success has been obtained with partial ordering of structures
[3,12,20–22,32,34,37,39,42,44–47,51,52]. However, here we are interested in absolute
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order. We will restrict out attention to acyclic graphs representing saturated hydrocar-
bons. We will see that even for this special class of structures the problem of finding
unique ID labels is difficult, even though it may be in sight. If this special case can
be solved one can then consider extension to more general cases.

2. Orderly algorithms

One of the earliest algorithms for assigning a single integer to acyclic graphs
representing saturated hydrocarbons was proposed by Gordon and Kennedy [16]. The
number implies an algorithm for the generation of trees (with maximal valence four).
The order in which trees are arranged is based on increases of vertices from the
central vertex. While the assigned integer is unique, because of the way it is de-
rived, the obtained ID numbers do not reflect structural similarities among alkanes.
An alternative is to use the smallest binary label as the criterion for the ordering of
structures [31]. The resulting order (based on the smallest label derived by read-
ing the rows of the adjacency matrix from left to right and from top to bottom) is
absolute, but except for smaller graphs and selection of a family of graphs (e.g., cu-
bic graphs) the approach is not practical for the construction and ordering of general
graphs.

Orderly algorithms have been outlined and discussed by Read [7,8]. In fact, any
computer construction of graphs implies an absolute order, as the resulting structures
are delivered serially. For example, in figure 1 we illustrate the computer output for the
35 C9H20 nonane isomers as reported by Knop et al. [23]. This particular algorithm,
which used n-tuple code for trees [24], first produces trees with the maximal valence
(four), then those with lesser valence (three and two). In table 1 we have ordered the
18 isomers of octane according to lexicographic order (based on the longest chain),

Figure 1.
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Table 1
Ordering of isomers of octane with respect to different generating algorithms.

In columns indicated by asterisk, the smallest index is listed first.

Lexico- n-tuple∗ Smallest Budding∗ λλ
graphic binary

n 1 1 1 1 1
2-M 2 5 7 2 2
3-M 3 4 3 4 3
4-M 4 3 6 5 4
3-E 5 2 2 6 6
2,2-MM 6 14 15 12 9
2,3-MM 7 10 9 8 8
2,4-MM 8 7 10 6 7
2,5-MM 9 6 13 3 5
3,3-MM 10 13 11 14 12
3,4-MM 11 8 4 9 10
2-M, 3-E 12 9 8 10 11
3-M, 3-E 13 12 5 15 15
2,2,3-MMM 14 17 16 16 16
2,2,4-MMM 15 15 17 13 13
2,3,3-MMM 16 16 14 17 17
2,3,4-MMM 17 11 12 11 14
2,2,3,3-MMMM 18 18 18 18 18

according to Knop et al. n-tuple ordering [24], the smallest binary label [31], and
Balaban et al. “budding” order [2].

3. Ordering of isomers

In table 2 we continue to show ordering of the 18 octane isomers based on
selected molecular invariants. Because several invariants show degeneracy already
among octane isomers (e.g., Wiener index [54], Hosoya index [18], the connectivity
index [30], molecular topological index [53]), these were excluded. The topological
indices included are: the leading eigenvalue of the distance spectrum [26], Harary
index [26], Balaban’s J index [1], hyper-Wiener index [35], and the leading eigenvalue
of Wiener matrix [36].

As we see most orderings agree for n-octane and 2,2,3,3-tetramethylbutane, the
two extreme structures that represent the least and the most branched structure. But
that is where most cases agree, while for the remaining structures different procedures
generate different order. We are interested in an ordering that will satisfy the following
conditions:

(1) The ordering is based on an invariant.

(2) The underlying invariant has transparent structural interpretation.

(3) Ordering is complete, i.e., no two isomers may have an identical index.
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Table 2
Ordering of isomers of octane with respect to different structural invariant

(topological index).

Lexico- Distance Harary Balaba Hyper- Wiener
graphic leading H nJ Wiener leading

eigenvalue∗ index∗ index∗ WW eigenvalue

n 1 1 1 1 1 1
2-M 2 2 2 2 2 2
3-M 3 3 3 3 3 3
4-M 4 4 4 4 4 5
3-E 5 8 5 6 6 8
2,2-MM 6 6 9 8 7 6
2,3-MM 7 7 8 9 9 9
2,4-MM 8 9 7 7 8 7
2,5-MM 9 5 6 5 5 4
3,3-MM 10 11 12 12 11 12
3,4-MM 11 9 10 10 10 10
2-M, 3-E 12 12 11 11 12 13
3-M, 3-E 13 16 15 15 15 16
2,2,3-MMM 14 15 16 16 16 15
2,2,4-MMM 15 13 14 13 13 11
2,3,3-MMM 16 17 17 17 17 17
2,3,4-MMM 17 12 13 14 14 14
2,2,3,3-MMMM 18 18 18 18 18 18

It is not easy to satisfy simultaneously all the three criteria. In order to minimize
the possibility that two molecules will have identical invariant-based ID numbers, the
property considered becomes more convoluted, and, hence, the interpretation of the
invariant in terms of familiar structural concepts becomes cumbersome. Consider, for
example, the recently proposed powerful topological index of Hu and Xu [19]. They
describe a procedure that leads to a unique index for all trees having n = 22 vertices
or less (and, hopefully, may show differentiation for even higher alkane skeletons on
which no tests are available), but structural interpretation of their index is not so simple.
Interpretation should not be confused with definition of an index. For example, the
Wiener index [54] is well defined, and in a way one may say has a simple structural
definition – yet interpretation of the index W is at best somewhat vague. According
to Wiener, the index is a measure of “compactness” of a molecule, but compactness
remains undefined. Platt was the first to try to offer structural interpretation of W ,
which he associates with molecular volume [28]. On the other hand, Bonchev and
Trinajstić [4–6] use W to define molecular branching, or better to say, to guide them
in arriving at the rules that define molecular branching.

Can we arrive at a structural invariant that will allow complete ordering of isomers
and yet sustain simple structural interpretation? Or, alternatively, in the spirit of the
approach of Bonchev and Trinajstić, can we arrive at some invariant that can be
the basis for the definition of some more familiar molecular structural features? We
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will expand upon the recent suggestion [33] that the leading eigenvalue of a specially
designed matrix in which the element (i, j), the leading eigenvalue of the path subgraph
between vertices i and j, appears to be a promising structural invariant that satisfies
our requirements, at least for the smaller acyclic graphs for which it was tested. The
matrix considered is a special case of a path matrix [41] which is constructed from
subgraphs containing all paths between vertices i and j.

4. Molecular branching

Branching is a structural concept the rigorous definition of which is elusive. It is,
however, an important intuitive concept even if not uniquely defined [13,17]. Accord-
ing to Rouvary [50], one should avoid sophistry in trying to derive a rigorous definition
for branching. It seems to us, therefore, that the definition of the branching (1) ought
to rest on some simple structural concepts, and (2) ought to discriminate among iso-
mers. Branching, if it is numerically to be characterized, ought to be different for
different isomers, just as, say, fingerprints are different for different fingers. Different
molecules can have for a number of properties the same numerical values, such as
molecular volume or molecular area, but branching, like connectivity and geometry, is
expected to be unique to a structure. If we take such a position then attempts to derive
branching and the problem of assigning a unique invariant to a structure considerably
overlap. They differ only in the relaxed requirement that branching be distinctive for
structures of the same size (isomers), while unique ID should apply to structures of
any size. Of course, combining a branching index with a size index (such as n, the
number of vertices) will convert one problem into the other.

We see now why the definition of molecular branching so elusive: it implies
solving the problem of representation of graphs by a single invariant. That problem
is itself elusive, as there is a belief that no simple invariant suffices to discriminate
all graphs. But nobody clarified what is a simple invariant and what is not! If the
problem of representing structures uniquely by a single invariant is solved, and such
may appear to be the approach of Hu and Xu [19], this does not solve the problem of
branching. An invariant that solves the uniqueness for graphs, if found and confirmed,
need not have the desired interpretation as branching index, i.e., it need not parallel
molecular branching for the structures not in dispute. We will approach the problem
from the position outlined by Bonchev and Trinajstić: we will search for a molecular
invariant that parallels molecular branching (for cases of no dispute) and then use that
invariant as the definition of branching. Before we continue, let us briefly review one
of the earlier attempts to define molecular branching.

Lovasz and Pelikan [25] suggested the leading eigenvalue of the adjacency ma-
trix as an index of molecular branching. The leading or the largest eigenvalue of
a matrix is associated with the first eigenvector which is everywhere positive (hav-
ing no nodal lines). There is considerable mathematical literature on this subjects as
surveyed by Cvetković and Rowlinson [11]. Polansky and Gutman [29] considered
calculation of the largest eigenvalue for molecular graphs. Except for the early sug-
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Table 3
The leading eigenvalues of the adjacency matrix (A), the distance matrix (D), the

Wiener matrix (W ) and the path matrix (P ).

Reference eigA eigD eigW eigP W WW
isomer

n-octane 21.8364 28.3908 57.1698 10.3981 84 210
2-M 20.4792 25.8407 52.6122 10.2866 79 185
3-M 19.7628 24.9881 48.4059 10.2359 76 170
4-M 19.5420 24.7474 46.6606 10.2211 75 165
2,5-MM 19.1115 23.3045 47.7238 10.1712 74 161
3-E 18.7788 22.3642 42.2041 10.1696 72 150
2,2-MM 18.4133 22.7522 44.4713 10.0816 71 149
2,4-MM 18.3964 21.7890 43.4185 10.1151 71 147
2,3-MM 18.1815 22.4563 42.0589 10.0900 70 143
3,4-MM 17.6759 21.9365 39.2901 10.0484 68 134
3,3-MM 17.4426 20.6735 38.5332 9.9994 67 131
2-M, 3-E 17.4187 20.5212 37.4277 10.0329 67 129
2,2,4-MMM 17.0338 20.3752 39.1411 9.9543 66 127
2,3,4-MMM 16.8079 20.1793 37.0246 9.9526 65 122
3-M, 3-E 16.6705 19.6954 34.1415 9.9314 64 118
2,2,3-MMM 16.3152 19.9044 34.9935 9.8771 63 115
2,3,3-MMM 16.0683 19.6049 33.4679 9.8512 62 111
2,2,3,3-MMMM 14.9373 18.1965 30.3305 9.6938 58 97

gestion of Lovasz and Pelikan to view the largest eigenvalue as the branching index,
until recently there were no other applications of leading eigenvalues. For example,
the leading eigenvalue of the distance matrix apparently has not received similar at-
tention. However, recently the leading eigenvalue of the so called D/D matrix was
interpreted as the folding index [38] and applied to the characterization of folding of
mathematical curves and long chains, as models for characterization of protein fold-
ing [40,43]. The leading eigenvalue of matrices appears to have been undeservedly
overlooked in the past. We will see here how the leading eigenvalue of the path matrix
can be used as the basis for a revised definition of the branching index for molecular
graphs.

In table 3 in the first numerical column we listed the leading eigenvalues (λ1)
of the adjacency matrix for 18 isomers of octane. The isomers have been ordered
in decreasing value of the eigenvalue, the order that fully coincides with the ranking
based on Wiener number (W ), except that two pairs of isomers have the identical W .
If, however, we use the hyper-Wiener number WW [35], the coincidences in W are
removed and ordering of λ1 parallels that of WW . Because of the parallelism between
λ1 and W , it is not surprising that Bonchev and Trinajstić based their discussion of
the molecular branching on the Wiener index. All they had to be concerned with are
the cases of W degeneracy, of which λ1 is not free when considerations are extended
to larger alkanes.
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An alternative would be to use WW as an index on which to base a definition
of molecular branching, since WW shows fewer degeneracies, but WW was not
available at the time of earlier discussions of molecular branching. However, one can
also explore the leading eigenvalue of other graph matrices and see if they may offer
a useful definition of molecular branching. In table 3 we show the first eigenvalue
of the distance matrix δ1 [27], Wiener matrix ω1 [35], and path matrix λλ1 (this
work). The leading eigenvalue of the distance matrix and Wiener matrix show the
occasional minor discrepancy in the parallelism with W . For example, the relative
order of 2,5-MM and 3-E for D matrix and 4-M and 2,5-MM for the W matrix.
The leading eigenvalue of the path matrix fully parallels W , though it reverses the
relative values for the isomers associated with degenerate W (cases W = 71 and
W = 67) in comparison with the ordering induced by λ1. However, the question,
which is more branched 2,2-dimethylhexane or 2,4-dimethylhexane (W = 71), and
3,3-dimethylhexane or 2-methyl-3-ethylpentane (W = 67), is open to debate, because
we are comparing structures of different branching patterns. Hence, we should first
focus attention to cases for which there is no dispute and then reconsider questions
like the above in order to select the approach on which to base the definition of the
branching. All the approaches listed in table 3, i.e., λ1, δ1, ω1, λλ1, W , WW , are
the candidates, and one with the least degeneracy may be given the preference. We
already know that λ1, δ1, W , WW show the degeneracy, leaving as candidates ω1

and λλ1 to be further explored. But, before we opt for one of the two alternatives,
we should explore how the candidate procedures characterize molecular branching for
cases of no dispute.

5. Cases of no dispute

The cases of no dispute involve short sequences of isomers that have a regular
branching pattern, such as the sequence 2-M, 3-M, 4-M, and 2,2-MM, 3,3-MM. In
each sequence the center of branching is moving toward the center of the molecule
and this is fully reflected in all the branching descriptors of table 3. Observations
like this lead Bonchev and Trinajstić [4–6] to their rules that define relative degree of
branching. The above is their Rule 7: The branching increases when, for a constant
number of vertices, a branch displaces from the terminal to a more central vertex in the
largest graph chain. The sequel 2,5-MM, 2,4-MM, 2,3-MM suggests more branched
isomers, one at which the branching vertices are at shorter distance. By combining
this rule with the already stated Rule 7 we conclude that 3,4-MM should be viewed
as more branched than 2,3-MM, and all the six descriptors of table 3 satisfy such an
expectation. Comparison of the relative magnitude for the six descriptors of table 3 for
2-M and 3-E leads to the observation that, other things being equal, a more branched
structure has longer branches. This observation is the basis for Rule 5 of Bonchev and
Trinajstić [19]: In acyclic graphs branching increases when, for a constant number of
vertices, the length of branches increases at the expense of shortening the largest graph
chain.
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The ambiguities and differences in opinions may arise when we want to establish
the relative branching for isomers that have distinct branching patterns. For example,
should 4-methylheptane be viewed as more branched than 2,5-dimethylhexane?

This is the case of overlap of distinct structural traits, which have been summarized in
two distinct rules. But how do the two rules interlace? Here we had to rely on a selected
descriptor and, as we see from table 3, different descriptors may give different answers.
Even some cases of different branching patterns can be rationalized. Consider, for
example, 2,2-dimethylhexane, 2,3-dimethylhexane and 3,3-dimethylhexane:

We can view the branching of 2,3-MM as between 2,2-MM and 3,3-MM, which is
consistent with the already mentioned rules. Take one methyl group of 2,2-MM as
moved toward the center of the molecule, the process that increases the branching
according to stated rules. When the second methyl group of 2,2-MM is moved, we
further increase the branching (and obtain 3,3-MM), hence

2,2-MM < 2,3-MM < 3,3-MM.

All six descriptors of table 3 support the above inequality. The same argument applies
to establish the following branching inequalities:

2,2,4-MMM < 2,3,4-MMM < 2,3,3-MMM,

2,2,4-MM < 2,2,3-MMM < 2,3,3-MMM,

2,3-MM < 2-M, 3-E < 3-M, 3-E,

all of which are satisfied by the six descriptors of table 3. However, the relative
ordering of some pairs remain unresolved, such as the already mentioned 4-M and
2,5-MM, or 2,5-MM and 3-E, or 3-E and 2,2-MM, or 3,3-MM and 2-M, 3-E. The
sample of 18 octanes is perhaps limited to resolve all such cases. We will proceed by
considering nonane and decane isomers.

6. Isomers of nonane and decane

In table 4 we listed λ1 [10], λλ1 (this work), W , WW [35] values for 35
isomers of nonane. As we see in the columns λ1 and W , the leading eigenvalue of
the adjacency matrix and the Wiener index are now of little use because of excessive
degeneracy. Even, the WW index shows some degeneracy (2,2,5-MMM and 3,3-MM
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Table 4
The leading eigenvalues of the adjacency matrix (A) and the path matrix (P ) for
nonane isomers together with Wiener number and hyper-Wiener number WW .

Isomer λ1 λλ1 W WW

n-octane 1.902 1.353080 120 330
2-M 1.962 1.341400 114 297
3-M 2 1.335624 110 275
4-M 2.015 1.333180 108 264
2,6-MM 2 1.329448 108 265
3-E 2.042 1.327308 104 242
4-E 2.053 1.324825 102 231
2,5-MM 2.036 1.323350 104 244
2,4-MM 2.061 1.320387 102 234
2,2-MM 2.117 1.319517 104 247
2,3-MM 2.084 1.319371 102 235
3,5-MM 2.074 1.316715 100 224
2-M, 4-E 2.084 1.314182 98 213
3,4-MM 2.112 1.312700 98 215
2-M, 3-E 2.119 1.310149 96 204
3,3-MM 2.165 1.309333 98 217
2,2,5-MMM 2.136 1.306821 98 217
4,4-MM 2.175 1.306327 96 207
2,3,5-MMM 2.117 1.306172 96 206
3-M, 4-E 2.136 1.305940 94 195
2,2,4-MMM 2.168 1.299633 94 198
3-M, 3-E 2.206 1.298488 92 188
2,3,4-MMM 2.165 1.297922 92 188
2,4-MM, 3-E 2.175 1.294829 90 178
2,2,3-MMM 2.216 1.294615 92 190
2,4,4-MMM 2.194 1.292480 92 189
2,3,3-MMM 2.236 1.290512 90 181
3,3-EE 2.236 1.290067 88 170
2,2-MM, 3-E 2.236 1.287282 88 171
3,3,4-MMM 2.247 1.286261 88 172
2,3-MM, 3-E 2.264 1.282085 86 163
2,2,4,4-MMMM 2.236 1.281855 88 173
2,3,3,4-MMMM 2.288 1.274028 84 156
2,2,3,4-MMMM 2.255 1.279160 86 164
2,2,3,3-MMMM 2.334 1.266410 82 149

have WW = 217, while 3-M, 3-E and 2,3,4-MMM have WW = 188). One may
even speculate that if λ1 and W were initially examined for nonane and higher alkanes,
perhaps they would not have been suggested as the branching index or used as a guide
in defining molecular branching. The index WW shows limited degeneracy, but as
the size of the graph increases so also will the number of structures with identical
WW . Only λλ1 shows no degeneracy (and this is also true for the 75 decane isomers).



354 M. Randić / Acyclic saturated hydrocarbons

A number of larger trees that may result in producing the same leading eigenvalue λλ1

have been tested and so far all graphs have unique λλ1. Although larger alkanes have
not yet been tested systematically, 35 nonanes and 75 decanes offer a sufficiency large
pool of structures that may offer enough insight and allow their molecular branching
to be quantified. So a derived definition of branching can then be extended to even
larger structures.

The first thing to notice is that there is no longer a strict parallelism between W ,
WW and the leading eigenvalue λλ1. Again, if we consider well-defined sequences
of structurally related isomers, we see that there is no dispute on the relative branching
among such. Thus we arrive at inequalities

2-M < 3-M < 4-M < 5-M,

2,5-MM < 2,4-MM < 2,3-M < 2,2-MM,

2,2,5-MMM < 2,2,4-MMM < 2,2,3-MMM,

2,2,4,4-MMMM < 2,2,3,4-MMMM < 2,3,3,4-MMMM,

2,2,4,4-MMMM < 2,2,3,4-MMMM < 2,2,3,3-MMMM,

etc.

However, we cannot immediately apply the rules to resolve, for example, which of the
isomers 2,3,3,4-MMMM or 2,2,3,3-MMMM is more branched:

But, if we ignore the common part, 3,3-MM, of the two isomers and compare 2,4-
dimethylpentane to 2,2-dimethylpentane (and analogous octane and nonane isomers
2,5-MM and 2,6-MM to 2,2-MM isomers, respectively), we can conclude that 2,2,3,3-
MMMM is the most branched isomer.

There are a number of disagreements between the branching as determined by
W and as determined by λλ1. These are illustrated in figure 2. None of the cases in
dispute can be reduced to a simple structural rule, since in all cases different structural
components are present in each isomer. Perhaps the only case that can be reduced
is the case of 2,4-MM, 3-E and 2,4,4-MMM, which, when we eliminate one of the
terminal methyl group it reduces to 2-methyl-3-ethylpentane and 3,3-dimethylhexane,
respectively. The two isomers of octane have the same W , but the letter has smaller
λλ1, showing consistency with the branching found for corresponding nonane isomers.

In table 5 we listed the branching indices (defined as λλ1/n) for 75 isomers
of decane. It seems that it is simpler to propose a single invariant as governing the
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Figure 2.

definition of molecular branching than trying to extract a sequence of rules that only
verbalizes the behavior of the chosen invariant. The selected invariant should parallel
the regularities established for smaller alkanes (which can be formulated in a set of
rules that hold for a family of closely related isomers). Ambiguities that originate
when distinct structural families interlace are resolved by using the selected invariant
as the criterion. Difficulty will arise when and if two non-isomorphic structures show
the same invariant. So far this has not happened for either λλ1 and ω1, but future
work will show if these simple invariants will remain unique or not. We have selected
here λλ1 as the chosen invariant for defining molecular branching for two reasons:
(1) several larger acyclic graphs have been tested and did not produce duplicate λλ1,
and (2) the path matrix has as entries real numbers while Wiener matrix has as entries
integers. It is, thus, less likely that the leading eigenvalues of path matrix coincide.

7. Concluding remarks

Molecular branching will either remain a qualitative descriptor and as such be of
limited use or the concept has to be rigorously defined and quantified. If we opt for
the latter, then there appears to be two routes to such quantification: Either we set up a
hierarchy of rules to cover all possible situations, or we search for a structural property
that will discriminate among isomers. We advocate the latter route and propose the
leading eigenvalue of the path matrix as the invariant that defines molecular branching.
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Table 5
The leading eigenvalue λλ1 for 75 decane isomers.

Isomer λλ1 Isomer λλ1

1 n-decane 1.398484
2 2-M 1.388607 39 2,3,4-MMM 1.347694
3 3-M 1.383456 40 2,2,3-MMM 1.347064
4 4-M 1.380908 41 4-M, 4-E 1.346094
5 5-M 1.380133 42 2,4,4-MMM 1.344555
6 2,7-M 1.378562 43 2,2-MM 4-E 1.343963
7 3-E 1.375674 44 2-M, 3-iP 1.343529
8 2,6-MM 1.373237 45 3,4,5-MMM 1.343403
9 4-E 1.372299 46 2,3,3-MMM 1.342911

10 2,5-MM 1.370446 47 3,3,5-MMM 1.342715
11 2,2-MM 1.369885 48 2,3-MM, 4-E 1.341286
12 4-P 1.369694 49 2,4-MM, 3-E 1.340038
13 2,4-MM 1.369252 50 2,2,5,5-MMMM 1.339099
14 2,3-MM 1.369198 51 3,3-EE 1.338354
15 3,6-MM 1.367662 52 2,2-MM, 3-E 1.337368
16 2-M, 5-E 1.365032 53 3,3,4-MMM 1.337358
17 3,5-MM 1.364434 54 2,2,4,5-MMMM 1.337341
18 3,4-MM 1.362384 55 2,4-MM, 4-E 1.337264
19 2-M, 4-E 1.360985 56 3,4,4-MMM 1.336123
20 3,3-MM 1.360433 57 2,2,3,5-MMMM 1.335315
21 4,5-MM 1.360346 58 2,3,4,5-MMMM 1.334694
22 2-M, 3-E 1.359730 59 2,3-MM, 3-E 1.331870
23 2,2,6-MMM 1.359419 60 2,3,3,5-MMMM 1.330722
24 3-M, 5-E 1.358761 61 3,3-MM, 4-E 1.330491
25 2,3,6-MMM 1.358502 62 2,4-MM, 3-iP 1.329653
26 2,4,6-MMM 1.358140 63 3,4-MM, 3-E 1.328370
27 4-iP 1.356872 64 2,2,4,4-MMMM 1.327348
28 4,4-MM 1.355896 65 2,2,3,4-MMMM 1.327253
29 2,2,5-MMM 1.353570 66 2,3,4,4-MMMM 1.323866
30 3-M, 4-E 1.353408 67 2-M, 3,3-EE 1.323641
31 2,3,5-MMM 1.352217 68 2,2,4-MMM, 3-E 1.323444
32 3-E, 4-M 1.352167 69 2,3,3,4-MMMM 1.321811
33 2,4,5-MMM 1.350993 70 2,2,3,3-MMMM 1.319127
34 2,2,4-MMM 1.349920 71 2,3-MM, 3-iP 1.317098
35 2,5,5-MMM 1.349444 72 3,3,4,4-MMMM 1.312183
36 3-M, 3-E 1.349397 73 2,2,3-MMM, 3-E 1.310881
37 2,5-M, 3-E 1.348083 74 2,2,3,4,4-MMMMM 1.310514
38 3,4-EE 1.347830 75 2,2,3,3,4-MMMMM 1.304239

One can view the path matrix as evolving from the adjacency matrix and the distance
matrix, being closely related to the latter. The leading eigenvalue of the adjacency
matrix was initially proposed (by Lovasz and Pelikan) as a branching index. Our
suggestion that this privileged position be awarded to the leading eigenvalue of the
path matrix can be viewed as a natural extension of the initial definition of molecular
branching.
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[25] L. Lovasz and J. Pelikan, Period. Math. Hungar. 3 (1973) 175.
[26] Z. Mihalić and N. Trinajstić, J. Chem. Educ. 69 (1992) 701.
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[30] M. Randić, J. Am. Chem. Soc. 97 (1975) 6609.
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